HB、5000系列智能温控仪通讯协议

MODBUS-RTU版

09A100R0

一、通讯使用

通讯协议和地址信息

协议类型: Modbus-RTU

1、物理层: 传输方式: RS485

通讯地址号: 1~247

通讯波特率: 2400、4800、9600(默认)、19200

通讯介质: 屏蔽双绞线

2、链路层: 主从半双工

一个数据帧格式

- a. 1位起始位, 8位数据位, 偶校验位, 1位停止位
- b.1位起始位,8位数据位,奇校验位,1位停止位
- c. 1位起始位, 8位数据位, 无效验位, 1位停止位(默认)

一个数据包格式:

地址码	功能码	数据码	校验码	
8-Bits	8-Bits	N*8-Bits	16-Bits	

注:

数据包的发送序列总是相同的,即地址码、功能码、数据码和其对应的校验码,每个数据包必须作为一个连续的位流传输; 仪表响应查询的时间为0.1~0.5, 典型值为0.2秒。

当数据帧到达终端设备时,被寻址到的设备去掉数据头,读取数据,经过校验数据无误,就执行数据所请求的任务,然后将数据返回给发送者,返回的数据包括以下内容:被寻址设备的地址、被执行了的命令、执行命令生成的被请求数据和两个字节的校验码。

1.1、地址码:

地址域在帧的开始部分,由1个字节组成,标明用户指定的终端设备地址。每个终端设备的 地址是唯一的。只有被寻址到的终端设备才和主机交换数据。

1.2、功能码:

功能码告诉被寻址的终端设备执行何种功能。下表列出了本仪表所有的功能码,它们的含义及它们的初始功能。

代码	意义	功能		
03H	读数据	获得一个或多个保持寄存器的当前数据		
1 O H	预置多寄存器	把多组二进制数据写入到多个寄存器		

1.3、数据码:

数据码包含了终端执行特定功能所需要的数据或终端响应查询时所采集到的数据。这些数据的内容可能是数值、参考地址或者极限值,例如:功能码告诉终端读取一个寄存器,数据码则需要指明从那个寄存器开始读取多少个数据。

1.4、校验码:

提供主机和终端检查传输过程中的错误的依据。出错校验能保证主机或终端不去响应传输过程中的错误数据,提高了系统数据的安全和可靠性。出错校验采用了16位循环余(CRC)的方法。

1.5、循环冗余校验(CRC)计算方法:

CRC占用两个字节,其值由传送设备计算出来,然后附加到数据码的最后一并发出,接收设备在接收到数据后,重新计算除去CRC码外其余的数据的校验码,然后和所接收到的CRC校验码进行比较,如果这两个值不相等,则数据传输发生了错误。

生成一个CRC校验码的流程:

- 1. 预置一个16位寄存器为OFFFFH, 称之为CRC寄存器。
- 2. 把数据包中的第一个字节数据与CRC寄存器中的低字节进行异或运算,结果返回CRC寄存器。
- 3. 将CRC寄存器向右移一位,最高位填以0,最低位移出并检测。
- 4. 如果最低位为0: 重复第三步(下一次移位)。如果最低位为1: 将CRC寄存器与A001H进行异或运算。
 - 5. 重复第3, 第4步, 直到移完8次。
 - 6. 重复第2步到第5步来处理下一个字节数据,直到所有的数据字节处理完。
 - 7. 交换CRC寄存器的高低字节(低字节在前,高字节在后)。最终CRC寄存器的值就是CRC的值。

二、应用层功能详解

本节所述协议采用以下格式(数字为16进制)

1、读数据(功能代码03)。此功能允许用户在主机上获得从机仪表的工作参数和设定参数。 举例说明如下:

本例子为从01号仪表读取的数据:

寄存器地址0000H: 数据为0001H

寄存器地址0001H: 数据为0000H

寄存器地址0002H: 数据为0001H

寄存器地址0003H: 数据为0001H

主机发送的报文格式:

主机发送	字节数	返回的信息	信息说明	
从机地址	1	01H	发送信息01地址的从机	
功能码	1	03H	读取寄存器	
起始地址	2	0000Н	参数起始地址为0000H	
变量个数	2	0004H	读取4个寄存器(共八个字节)	
CRC码	2	4409H	由仪表计算得出	

从机响应返回的报文格式:

从机响应	字节数	发送的信息	信息说明	
从机地址	1	01H	来自01地址主机	
功能码	1	03H	读取寄存器	
读取字节	1	08H	读取4个寄存器共八个字节	
寄存器00	2	0001H	地址为0000H寄存器的内容	
寄存器01	2	0000Н	地址为0000H寄存器的内容	
寄存器02	2	0001H	地址为0000H寄存器的内容	
寄存器03	2	0001H	地址为0000H寄存器的内容	
CRC码	2	1517H	由仪表计算得出	

2、写多个寄存器(功能码10H)。此功能允许用户在主机上对仪表的多个连续寄存器进行设置。以下例子为主机对01地址仪表内0000H到0003H地址变量的参数进行设置。设置的参数如下:

寄存器地址0000H:数据为0002H 寄存器地址0001H:数据为0001H 寄存器地址0002H:数据为012CH 寄存器地址0003H:数据为00C8H

此功能实际也允许用户在主机上对仪表的单个寄存器进行设置。此时,须将变量个数设置成1个,数据字节长设置成2个自己,将起始地址指向所要修改的寄存器地址即可。

主机发送的报文格式:

主机发送	字节数	返回的信息	信息说明
从机地址	1	01H	发送信息至01地址的从机
功能码	1	10H	写多个寄存器
起始地址	2	0000Н	从0000H寄存器地址开始
变量个数	2	0004H	4个寄存器
数据字节长	1	08H	写入的数据共8个字节
写入的数据1	2	0002H	寄存器地址0000H
写入的数据2	2	0001H	寄存器地址0001H
写入的数据3	2	012CH	寄存器地址0002H
写入的数据4	2	00C8H	寄存器地址0003H
CRC码	2	69D9H	由主机计算得出

从机响应返回的报文格式:

从机响应	字节数	发送的信息	信息说明
从机地址	1	01H	来自01地址主机
功能码	1	10H	写多个寄存器
起始地址	2	0000Н	从0000H寄存器地址开始
变量个数	2	04H	4个寄存器
CRC码	1	1CC3H	由仪表计算得出

附:参数地址分配: (W:写、R:读)

地址	代号	变量名称	单位	取值范围	读写	备注
0000Н	PV	仪表测量值			R	注1
0001H	SV	主控设定值	全量程	150	W/R	
0002Н	AL1	第一路报警值	全量程	10	W/R	
0003H	AL2	第二路报警值	全量程	20	W/R	
0004H	ATU	自整定	0~1	0	W/R	
0005H	Р	比例带	0~9999	30	W/R	
0006Н	I	积分时间	0~9999	240	W/R	
0007H	D	微分时间	0~9999	60	W/R	
0008H	Ar	限制积分生效范围	0~100	25	W/R	

0009Н	T	主控制输出周期	0~100	2.0	W/R	
000AH	οН	主控回差	0~1000	0-4	W/R	
000BH	SC	传感器修正	-199~199	0	W/R	
000CH	LCK	数据锁	0~16	0000	W/R	
000DH	COD	显示页面	0~3	0	W/R	
000EH	SL1	输入信号选择	0~16	0000	W/R	
000FH	SL2					
0010H	SL3					
0011H	SL4	第一路报警方式	0~16	0001	W/R	
0012H	SL5	第二路报警方式	0~16	0101	W/R	
0013H	SL6	主控方式	0~16	0001	W/R	
0014H	SL7				W/R	
0015H	SLH	量程高限		1372	W/R	
0016H	SLL	量程低限		-30	W/R	
0017H	PGDP	小数点选择	0~3	0	W/R	
0018H	ОН	主控制回差	0~100	2	W/R	
0019H	AH1	第一报警不动作带宽	0~1000	2	W/R	
001AH	AH2	第二报警不动作带宽	0~1000	2	W/R	
001BH	DF	数字滤波系数	0~10	1	W/R	
001CH	FT	温度跟踪量	0~5	0	W/R	
001DH	OBTY	变送输出类型	0~2	1	W/R	注2
001EH	OBL	变送下限值	0~9999	0	W/R	
001FH	0BH	变送上限值	$0 \sim 9999$	400	W/R	
0020H	ADDR	通讯地址	1~247	1	W/R	
0021H	BAUD	通讯波特率	0~3	1	W/R	注3
0022H	INPL	输入信号最小值	-1999~9999	0	W/R	
0023H	INPH	输入信号最高值	-1999~9999	5000	W/R	
0024H	OUTL	最小输出功率	0~50	0	W/R	
0025H	OUTH	最大输出功率	50~100	100	W/R	
0026H	SOFT	软起动时间	0~500	30	W/R	
0027H	BUFF	输出波动限制	0~100.0	30	W/R	
0028H	ET	开机过冲抑制	10~200	10	W/R	

通讯备注:

注1: 测量值寄存器中的数据,实际测量值为data*0.1

注2: 变送方式寄存器中数据:

0代表0~20ma输出 1代表4~20ma输出 2代表0~10ma输出

注3: 波特率寄存器中数据:

0代表2400 1代表4800 2代表9600 3代表19200